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Abstract

Aircraft models have wide variations between them.
There are differences in their purpose, size, designa-
tion, structure, historical style, and branding. Nav-
igation systems deployed at airports need a visual
representation based classification system. The prob-
lem of fine-grained classification of these aircraft im-
ages is challenging because even though the models
are visually distinguishable, the differences are sub-
tle in many cases. Convolutional Neural Networks are
widely adapted for performing the task of classifica-
tion for different classes of objects. In this work, stan-
dard convolutional architectures have been explored to
test their performance on classifying these images. We
perform a simple feature extraction on these images
followed by domain specific fine-tuning for different
manufacturer and variant hierarchies of aircraft im-
ages. To improve upon the extracted features, we test
the performance of bilinear CNNs on this particular
classification task. Bilinear CNNs utilize existing fea-
ture extractors to combine local features before per-
forming the classification. Our project demonstrates
that these neural network architectures are most suited
to the task of classifying aircraft images.

1. Introduction

Aircraft classification is a challenging task. We
have a very wide range of aircrafts deployed all over
the world for various purposes-commercial, freight,
military etc. There are variations in models (Airbus
A320 and A320neo have a difference of sharklets),
variants(Boeing 737-200, 737-600 which differ in pas-
senger capacities among other things), family(Boeing
737 and Boeing 787 differ in number of engines)

and manufacturers(Boeing, Airbus, Bombardier etc).
These variations have arisen because of historical rea-
sons within the industry as well as the purposes which
these aircrafts were supposed to fulfill. Recently, there
has been a push for major airports to deploy camera
based aircraft guidance systems. This necessitates the
development of robust detection and classification sys-
tems for these aircrafts. A proper classification sys-
tem can then provide guidance to that particular air-
craft variant based on its properties. Hence, there is a
need for a technology which can differentiate between
aircrafts based on its visual properties.
In parallel to this requirement has been the develop-
ment of neural networks as a classifier. Various ar-
chitectures of neural networks have achieved remark-
able performances on the Imagenet classification task
which comprises of 1000 different objects. In com-
parison, aircrafts only have about 100 different vari-
ants for classification although the differences in be-
tween classes are fairly subtle in nature. In this work,
we explore the performance of existing neural network
architectures - Resnet, Alexnet, VGG16 and bilinear
CNNs for this classification task.
The dataset used for the work is the FGVC-Aircraft
Benchmark dataset[6]. It contains 10,200 images of
aircraft, with 100 images for each of 102 different air-
craft model variants. A few sample images from the
dataset are shown in Fig.1.
The baseline for the task has been as described in the
work here [6]. The baseline model is a non-linear
SVM on a χ2 kernel, bag-of-visual words, 600 k-
means words dictionary, multi-scale dense SIFT fea-
tures, and 1 x 1, 2 x 2 spatial pyramid with the model
trained on the entire image instead of the bounding
box information which is also provided along with the
dataset. The overall accuracy reported for the classi-
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fier is 48.69% measured using a confusion matrix ap-
proach.
To build upon the baseline, an existing classification
network architecture was used as a feature-extractor
for the images in this dataset. The performances were
then compared after fine-tuning the network on the
dataset. This was done for two hierarchies - Manu-
facturer and Variant as provided in the dataset. Based
on the results obtained, experiments were carried out
with bilinear CNN architectures for the classification
task.

2. Related work

Alexnet[4] was perhaps the first implementation of
neural networks to image classification task. Since
then, different variants of convolutional neural net-
works have been applied to the task of image classi-
fication. Some of the variants proposed over the years
are - VGGNet[7] and Resnets[2]. VGGNet of different
layer depths have achieved significant results on the
Imagenet classification task. The development of Var-
ious techniques like Batch Normalization and dropout
[3] have been proposed to improve the performances
of these networks and generalise them to other visual
representation based tasks.
Applying these neural networks to the task of Fine-
grained visual classification has been presented in
[5]. These existing networks adapt robustly to the
fine-grained classification task. However, with lim-
ited data availability, extracting additional combina-
tions of features is hypothesised to improve the re-
sults. Such a task is achieved using Fisher vectors in
the literature[1]. As CNNs are a natural feature ex-
tractor, the work of Lin et al[5] also proposes bilinear
CNN architectures which leads to an improvement in
the classification tasks for birds, cars and aircrafts. In
this project, we follow a similar approach for the clas-
sification task which is focused on aircrafts.

3. Approach

In this project, VGGNet, AlexNet and Resnet were
trained from scratch initially. The dataset used for the
task is the FGVC-Aircraft Benchmark dataset. The
(main) aircraft in each image is annotated with a tight
bounding box and a hierarchical airplane model label.
The data is divided into three equally-sized training,
validation and test subsets. These are the hierarchies

Figure 1. Example images from the FGVC-Aircraft dataset

present in the dataset -

• Model - The variation in aircraft models( for ex-
ample Airbus A320 and A320new) may not be
visually measurable since the rigid-body dimen-
sions are usually similar in this category. Aircraft
manufacturers use these in their product improve-
ment iterations.

• Variant - The dataset provides 100 variants. This
class label is less specific compared to the previ-
ous hierarchy.

• Family - Family differences arise owing to air-
crafts having different passenger capacities. This
one is an intermediate visual classification prob-
lem lying in between Variant and Manufacturer
hierarchies.

• Manufacturer - The dataset provides images
from 30 different manufacturers. All the aircrafts
manufactured by the same company fall under
one category.

Initial training of standard architectures was done on
the Manufacturer hierarchy. As the performace of
the architectures was below the baseline for this task,
transfer learning was explored for this domain. These
networks were subsequently finetuned to gauge the im-
provement in their performance for the classification
task. Once the best possible results were obtained af-
ter carefully tweaking the hyperparameters for each of
the network architectures, the results as described later
were obtained.



Next, classification was carried out for the Variant hi-
erarchy. After following the previous methodology of
first using the existing weights as feature extractors
and then, comparing the performance to the one af-
ter fine-tuning the weights, the idea of Bilinear CNNs
was explored for this task as it was hypothesized that
significant improvements could be achieved over the
results obtained. These novel architectures provided
substantial benefits over the previous architectures. A
pictorial depiction of the same is presented in Fig 2.
The Bilinear CNN model combines the features ex-
tracted from two extractors to obtain a bilinear vec-
tor before performing the classification task. For this
project, the CNN models used were pre-trained on
the ImageNet dataset. This is useful because the data
available solely from the dataset is in-sufficient to train
the network for an acceptable level of performance.
This also has the benefit of allowing images of arbi-
trary size to be processed by the CNN. To aggregate
the features from the two CNNs, sum-pooling is per-
formed across the features. The resulting vector is l2
normalized after passing through a signed square root
step.
The input images were resized to 448x448 and the
features were extracted using two networks before a
bilinear-combination, sum-pooling and normalization.
It performs significantly well for the variant category
classification. The feature extractor used in the origi-
nal architecture is VGGNet. After evaluating its per-
formance as it is, we explored a variation of the model
where Resnets were used as the feature extractors be-
fore the pooling task.

4. Experiment

4.1. Manufacturer hierarchy

Classification task involving a total of 30 classes.
The images were resized to 224x224 before passing
them as input to the network. The weights were trained
using Stochastic Gradient Descent with a learning rate
of 0.01 and a cross-entropy loss function. The perfor-
mance of standard architectures are listed in Table 1.
Upon performing a feature-extraction task with these
existing architectures, we obtain a performance below
the baseline. Although marginally below the baseline,
but the weights of the network are trained only for clas-
sification of the new 30 classes for the fully-connected

Figure 2. Bilinear CNN architecture

Network Feature extraction Fine-tuning
Resnet34 45.81% 78.09%
VGG11 45.84% 84.25%

Table 1. Accuracy results for different architectures on man-
ufacturer hierarchy. Networks trained for a total of 60
epochs using SGD(η = 0.01, ε = 10−4)

layers at this step. Fine-tuning the entire network on
the dataset leads to an improvement in the classifica-
tion task as noted in Table 1.
This change in the performance is observed to be
higher in the case of VGGNet compared to the other
models. A possible reason for the quantum improve-
ment is that we have a lesser number of classes to train
for at the current task as compared to the original Im-
ageNet dataset which has 1000 different classes of ob-
jects. A key observation is that the training of Alexnet
took a similar amount of time as that of the VGGnet.
However, when compared to that of Resnet, the train-
ing time was about 3x lower even though the experi-
ments were conducted using a 34-layer Resnet as com-
pared to a 11 layer VGGnet with batch normalization.

We present samples of misclassified images for this
task in figure 3. It can clearly be observed that the
wrong predictions consist of images which are very
challenging to distinguish visually. Even for the naked
eye, images which consist of the aircraft’s fuselage in
a large portion of the image provide a tough classifica-
tion task. Other instances included images where the
fuselage merged with the background textures mak-
ing it difficult to distinguish between the aircraft mod-
els. Also, our classification task was more accurate for
classes with more image samples. Classes with fewer



Figure 3. Manufacturer images which were mis-classified
by ResNet34

samples were more likely to have their predictions in-
correct when evaluated on the test-set.

4.2. Variant hierarchy

Classification task involving a total of 100 classes.
The performance of standard architectures are listed in
Table 2. Similar training parameters were used as de-
scribed for the manufacturer hierarchy. This task is a
challenging one because of the subtle visual variations
in between the models and we obtain a classification
accuracy which is again below the baseline.
Proceeding as before, we perform finetuning of the ar-
chitectures. The observed results are reported in Table
2. We observe that the VGGNet outperforms other ar-
chitectures after finetuning the weights of the entire
network. This could be because of the weights which
are updated in case of VGGNet which are more than
that of other architectures.
Comparison in terms of training time gives us a value
which is three times lower for VGGNet vis-a-vis
Resnet. Resnet-34 trained much faster compared to
VGG-11 with batch normalization. Alexnet took a
similar amount of time for training as compared to
VGGNet. However, it had a poor accuracy on the clas-
sification task for the test set images.
We present a few of the mis-classified images for this
category in figure 4. Even though we observe an in-
crease in the performance of the classification task,
the best performance observed at the fine-grained task
seems low for a standard architecture. To improve the
same, we explore the idea of Bilinear CNNs.

Network Feature extraction Fine-tuning
AlexNet 23.52% 32.04%
VGG11 49.26% 60.6%

ResNet34 31.08% 54.72%

Table 2. Accuracy results for different architectures on vari-
ant hierarchy. Networks were trained for a total of 60
epochs using SGD(η = 0.01, ε = 10−4)

4.3. Bilinear CNNs

This architecture utilizes CNNs as feature extrac-
tors. It takes the features after the last pooling layers
from 2 CNNs, computes their outer product and from
the resulting matrix, performs a summation before
utilizing the fc-layers for the k-way classification task.
In the original paper [5], bilinear architecture has
been described using the VGG-16 layers as the CNN.
In this project, since we started off with VGG-11
architecture, we continue with that as our feature
extractor for the bilinear model. This is to have a more
consistent evaluation metric for the task at hand.
The first step here was again to finetune the classifi-
cation layer for the task keeping the CNN pre-trained
on the Imagenet weights. The next step involved
finetuning the weights of the entire network as has
been the procedure followed till now. The results for
the trial runs are presented in Table 3. As expected,
we observe a quantum jump when we fine-tuned the
weights of the entire network on the current dataset.
These numbers are also similar to that of manufacturer
hierachy classification as reported previously. In the
original work, 8% higher accuracy is reported on the
test set. This could be due to the fact that our model
used VGG11 architecture while theirs is based on
VGG16 architecture.
Continuing with the exploration of reducing the
training time, we tweaked the bilinear model to use
a ResNet34 architecture in place of VGG11. The
results for the same are reported in table 3. The
performance accuracies obtained here are lower that
that of VGGNet. This result is similar to that of the
previous case with standard architectures. Another
similarity was in the training time which was observed
to be 2.5x lower in case of Resnet34 as compared to
that of VGG11.



Network Feature extraction Fine-tuning
VGG11 67.3% 76.5%

ResNet34 56.6% 70.2%

Table 3. Test-set accuracy results in case of Bilinear mod-
els. Networks were trained for a total of 100 epochs using
SGD(η = 0.05, ε = 10−5)

Figure 4. Variant images which were mis-classified by
ResNet34

5. Conclusion

In this work, we wanted to explore the task of clas-
sifying aircraft images using neural networks. For that
process, we utilized an existing dataset namely FGVC-
Aircraft. The performance of stand-alone architectures
on these images weren’t good. However, these CNNs
are robust to domain adaptation. Specifically, to the
task of fine-grained classification. The existing archi-
tectures responded differently to the task of network
fine-tuning. VGGNet clearly outperformed other stan-
dard architectures like Resnet and Alexnet. An impor-
tant observation in this experiment was that stacking
more number of layers didn’t necessarily improve the
performance of the network as is observed in case of
Resnet and VGGNet results.
Adapting specifically to the task of fine-grained classi-
fication, a local feature extractor performs better. This
is because a local feature extractor can learn to differ-
entiate between subtle variations between images. An
aircraft for example can be differentiated visually by
the fuselage length, its wingspan, the number of win-
dows on its body. These are features which a local
feature extractor is able to extract and hence, its per-
formance at the fine-level classification task is better
when compared to networks that do not look at this
methodology of analysis.
A possible way to implement these local features is by
using a bilinear CNN and their performance is quite

good. The bilinear CNNs combine features by per-
forming a pooling over the extracted features and this
method guarantees good results for the classification
task.
Analysing the mis-classified images in both the hierar-
chies across architectures, we observe that a high num-
ber of them belong to the set where only the fuselage
occupies a large portion of the image. There are pic-
tures where the aircraft is being viewed from below or
the other end. These viewpoints make the classifica-
tion task difficult. A possible way to be able to distin-
guish between them in a more robust manner will be
to increase the training samples for minor categories.
In the current dataset for the manufacturer variant, we
observe that there are categories with only 30 images.
Such a constraint makes it difficult to learn the fea-
tures and hence, inaccuracies creep in the final evalu-
ation. An increase in those samples should lead to an
increase in the accuracy of the network.

5.1. Future Explorations

The following unexplored ideas came up during the
course of the project and will be explored later on -

• End-to-end training of the entire bilinear model
with the Resnet - VGGNet when trained end-to-
end provided for the bilinear model provided an
increase of 7% in accuracy results as reported in
the work of [5]. A similar exercise when carried
out with deeper Resnet architectures should lead
to an increase in the classification performance.

• Combining hierarchical classification tasks in an
efficient manner - Since a lot of features are
similar across manufacturers when it comes to
aircrafts, a possible classification task utilising
this information should help in the overall task.
This is based on the hypothesis that the aircraft
manufacturers utilise components that are similar
across their models and these components have
similar visual features. The difference arises in
the positioning of these components across the
aircraft body. Thus, an effective classification ar-
chitecture can utilise these features.

• Visualizing the features learned during the train-
ing to infer distinguishing aircraft components
which the network learns - This will be extremely



helpful in analysing the mis-classified images. A
possible idea to explore is when we are trying to
perform a binary classification task in between
two models. Such a visualising feature will help
in knowing the root cause of mis-classification
and hence, generalizing it later on to the multi-
classification task.

• Exploring the idea of a trilinear model architec-
ture - Trilinear architectures can help bring in
additional features to the model. This could be
based on optical flow, depth estimates or some
gaussian filters. The idea is to capture variations
which can help in the task of classification.
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