
Categorizing Animals in the Wild

Shanu Vashishtha
UMass Amherst

svashishtha@umass.edu

Abstract

Animal species have succinct visual variations. In
the biological classification hierarchy, inter genus
variations are starker compared to inter species varia-
tions. Wildlife ecologists over the world collect numer-
ous camera trap images in wildlife preserves for the
purpose of studying migration patterns and designing
effective ecosystems for wildlife human interactions.
To extract meaningful information at the moment a for-
est ecologist has to browse through the collection of
images which contains many false positives and filter
the interesting ones manually. A computer vision tool
that identifies these animal species will reduce hours
of manual workload. In this work, we investigate the
problem of classifying animal species given a camera
trap image.

1. Introduction

Animal species classification is a fine-grained vi-
sual classification task. We observe a wide variation in
visual characteristics of animals. There are variations
in genus (a bear has a much larger body structure than
a cat) as well as species (Siberian tigers have paler or-
ange fur than other tiger species and brown instead of
black stripes compared to Sumatran or Bengal tiger).
These variations make the task of identifying and clas-
sifying them in images correctly a major computer vi-
sion problem.
In parallel to this growing requirement of a tool within
the wildlife community has been the development of
neural networks as a classifier. Various architectures
of neural networks have achieved remarkable perfor-
mances on the Imagenet classification task which com-
prises of 1000 different objects. In comparison, com-

mon animal species only have about 30 different vari-
ants for classification in a given region although the
differences in between classes are fairly tenuous in na-
ture.
One of the drawbacks of these neural network based
models however is their inability to generalize to new
regions. The models even though are good at learning
features to classify animal images from one region fail
to perform well when exposed to animal images from
a new region. In this work, we explore the direction to
make the existing models more robust. The first step
to tackle this problem is to collect training data from
one region and test them on images from nearby areas
where the species found might not completely over-
lap.
While doing this, we are faced with some new chal-
lenges apart from the existing ones which we need
the model to tackle. There can be previously unseen
species in the test data or other image challenges as
well. These include illumination, motion blur, small
region of interest, occlusion, perspective changes, dif-
ferent weather conditions, camera malfunctions and
other temporal changes manifested in the way back-
grounds change across an image at a given camera trap
location.
In this work, we explore techniques to overcome these
challenges in images and present a comparative study
to understand the effect of these techniques on the final
model performance. All the experiments are carried
out on the iWildCam 2019 dataset. We first describe
the dataset in detail followed by the experiments, re-
sults and a discussion in the following sections.

2. Dataset

For this challenge, we use the iWildCam 2019
dataset. The dataset statistics are present in Tab.1. We

1



Split Images Locations Classes
Train 196,157 California South(138) 14
Test 153,730 Idaho(100) 23

Table 1. iWildCam 2019 dataset

Figure 1. Distribution of classes in the training set

present a distribution of classes of the training set in
Fig.1. The dataset is provided as part of a Kaggle
competition hosted here - https://www.kaggle.
com/c/iwildcam-2019-fgvc6/overview.
As can be noticed, the test set has new classes not
seen in the training set. Amongst the classes present
in the training set, the distribution is highly skewed as
well. The final classification labels for the images are
one of the following - empty, deer, moose, squirrel,
rodent, small mammal, elk, pronghorn antelope, rab-
bit, bighorn sheep, fox, coyote, black bear, raccoon,
skunk, wolf, bobcat, cat, dog, opossum, bison, moun-
tain goat, and mountain lion. Some of the sample im-
ages are shown in Fig.2.
Although the original versions of the training data pro-
vided are 87 GB and 153GB, a smaller version of these
images are provided as well where the image width
has been resized to 1024 pixels. These are 27 GB and
18 GB in size respectively and have been used in this
work.

3. Related work

One of the beginning points of exploration of this
area has been to detect animals in images. As part
of the Data Science for common good program [2],
we worked on detecting animals from the images cap-
tured. However, one of the challenges we faced was to
actually find annotated images from the wild. We had
access to data from ecologists working at The Nature

Conservancy but our investigation pointed out that a
lot of the images had incorrect labels. Another chal-
lenge we faced during the project was that the im-
ages were captured in bursts and so a lot of them were
labelled incorrectly because the animal had already
cleared the camera field of view by then. The Snapshot
Serengeti dataset [8] suffers from the same drawback
even though it has a large number of images in its col-
lection.
Existing Natural world datasets such as iNaturalist[3],
CUB200[6], LeafSnap [4] have images collected by
humans. However, these differ from Camera trap im-
ages. Camera traps are fixed at one location and hence
the background of the images don’t change much. An-
other important fact is that there is no human bias
(such as good lighting conditions) in the images since
the camera is motion triggered.
The work by [7] illustrates one of the first applications
of neural networks to solve the species identification
problem. They describe a two-stage pipeline for the
task where at the first step, they solve the animal vs
empty task and then in the next stage use the animal
images from the first step to classify the animal species
present. However, they only experiment with transfer
learning and training from scratch on datasets with the
same labels in both the training and the test set.
An alternative approach to the two stage pipeline is to
use an existing detector that detects the animals in an
image. The region proposals extracted can then be fed
to a network to classify the animal images. The work
by [1] explores such an approach to identify wild go-
rillas in the Republic of Congo. They perform face
detection using a fine-tuned YOLOmodel resulting in
a sequence of candidate regions of interest within each
image. Each candidate region is then processed up to
the pool5layer of the BVLC AlexNet Model for fea-
ture extraction. Finally, a linear SVM trained on facial
reference images of the gorilla population performs
classification of the extracted features to yield a ranked
list of individual identification proposals.
Another step in this direction has been taken by Mi-
crosoft [5] with them releasing several of their trained
detectors and classifiers for the task of identifying
species in camera traps. Their Megadetector model
performs very well on a wide variety of data. How-
ever, the models are not hosted for everyone to play
around and can only be evaluated on external data us-

https://www.kaggle.com/c/iwildcam-2019-fgvc6/overview
https://www.kaggle.com/c/iwildcam-2019-fgvc6/overview


Figure 2. Example images from the iWildCam dataset

ing their provided APIs.

4. Approach

4.1. Baseline

The competition page provides a baseline model
which is an Inception Resnet V2 classifier trained with
no class rebalancing or weighting with an input size
of 299x299. The model is a full image classifier and
didn’t use a detector. We use this as a starting point to
improve our final performance.

4.2. Feature Extraction and Fine tuning

Transfer learning has proven to be effective for
many problems. Since a neural network pretrained on
the ImageNet dataset has learned useful features, eval-
uating its performance on a new dataset has become
the default approach. We use the Resnet18 model to
fine tune the last classification layer initially and then
update the weights of all other layers as a first step to
improve the baseline.

4.3. Grayscale Images

The most basic approach we looked into was con-
verting the images into grayscale before training.
It was hypothesized that since varying background
(green vegetation, snowy, arid rocks, day-night vari-
ations) was an issue, converting them to grayscale will
benefit the classification task.

4.4. Mixup as a regularizer

Mixup is one of the recent techniques proposed to
make neural networks learn a more linear model. In
this approach, we feed a convex combination of im-
ages with their one hot vector encodings to the model
for training. The idea is that this acts as a regular-
izer during training and helps tackle the generalization
problem in deep models. Our modified input becomes

x̃ = λxi + (1− λ)xj
ỹ = λyi + (1− λ)yj

where λ ∈ [0, 1] and (xi, yi), (xj , yj) are sampled ran-
domly from the training data.

4.5. Using Bounding box proposals

Techniques described till now focused on improv-
ing the standalone classification model. We also ex-
periment with using a detector to obtain the bounding
box proposals. The challenge provided the top 100
boxes and associated confidences for the images in the
dataset using a Faster-RCNN model with Inception-
Resnet-v2 backbone and atrous convolution. We in-
corporate these into our model as well.

4.6. Focal loss

Training a model with bounding box proposals
gives many easy examples and we penalise the train-
ing process to make the model focus on hard examples
using this modified loss function.



Figure 3. Some failure images from the finetuning experi-
ment. The first label is the prediction from the model per-
forming feature extraction while the second label is the pre-
diction after the finetuning process

5. Experiments and Discussion

The evaluation metric we follow is the F1 score. It
considers both the precision p and the recall r of the
test to compute the score: p is the number of correct
positive results divided by the number of all positive
results returned by the classifier, and r is the number
of correct positive results divided by the number of all
relevant samples (all samples that should have been
identified as positive). The F1 score is the harmonic
mean of the precision and recall, where an F1 score
reaches its best value at 1 (perfect precision and recall)
and worst at 0 [9]. Thus, our aim is to maximize the
F1 score in our experiments. Since F1 is more relevant
for binary classification task, in this work we report
the macro F1 score. To calculate the macro F1 score,
F1 score will be calculated for each class of animal
(including ”empty” if no animal is present), and the
final score will be the unweighted mean of all class F1
scores.

For fine-tuning and feature extraction, we resize our
images to 224*224 width and height. We also nor-
malize across the three channels with the mean val-
ues. While conducting the grayscale experiment, we
modify the first convolution layer of Resnet18 as we
have only one input channel. We train the model using
Adam optimizer with an initial learning rate of 0.01
and use cross-entropy loss. We split our training set
into 80:20 to create a validation set to obtain the best
hyperparameters. We perform the same augmentations
to the test set images as well. The results obtained for
our experiments are presented in Tab.2.

After feature-extraction, we obtain an F1 score of
0.117 on the public portion of test data and 0.097 on
the private portion of test data (68% of the total). Upon
fine-tuning, we obtain a F1 score of 0.123 on the pub-
lic portion while 0.086 on the private portion. This was

Figure 4. Some failure images from the grayscale experi-
ment

striking since although the model performed better on
one portion of the test set, it didn’t do well on the en-
tire test set. Some of the failure images are present in
Fig.3. The most common mis-prediction was for the
empty case in the images. We felt that the standalone
classifier failed at the task of detecting the animals and
hence, we decided to use the bounding-box proposals
in our later experiments.

For the Grayscale images, we finetuned the entire
network on grayscale images. With this experiment,
the aim was to remove the effect of day/night images.
Our experiment yielded a public F1 score of 0.109 and
a private F1 score of 0.087. The performance degrades
compared to our finetuning with normal images. This
implies that finetuning with grayscale images wasn’t
that helpful. However, as a way to incorporate some
robustness into our model we can randomly grayscale
some images instead of using all grayscale images.

For the Mixup experiment, we obtained a score of
0.109 on the public test data and 0.099 on the private
test data. This is still below the baseline we are trying
to improve upon but is a small improvement over our
grayscale experiment.

For the final experiment, we used the bounding box
proposals to train our model and combined all the pre-
vious techniques. We used a mixup with λ = 0.1,
grayscale probability of 0.01 and passed on the region
proposals to the model. We used the provided bound-
ing boxes for each of the images. These are used as
labels to train for the classification task. This provided
a score of 0.179 on the public set and 0.169 on the pri-
vate set. As can be seen, incorporating the proposals
led to a massive improvement in the final performance
of the model. This is intuitive because we are focusing
the model to become good at one task instead of two
sub-tasks. This technique is similar to the one pro-
posed in [6] with the only difference here being that
we don’t just focus on the bounding box proposals for
faces.



Model public F1 private F1
Baseline 0.125 0.115

Feature extraction 0.117 0.097
Fine-tuning 0.123 0.086
Grayscale 0.109 0.087

Mixup 0.109 0.099
Bounding box 0.179 0.169

Table 2. F1 scores obtained for different experiments

5.1. Kaggle leaderboard

Although our best model was able to beat the base-
line provided for the challenge, it featured amongst
the top 20 only. The best entry obtained a score of
0.361 and 0.399 on the public set and private set re-
spectively. While browsing through some of the sub-
missions made by other competitors who featured in
top 10, the author came across many new ideas which
have been listed in Sec. 7.1.

6. Failures

We implemented focal loss in our code but the
model didn’t converge when we tried to train using
that. We couldn’t figure out if there was a bug in our
implementation or something else during training and
hence, don’t have results for that experiment.

7. Conclusion

In this work, we wanted to explore the task of clas-
sifying animal species. We utilized an existing dataset
namely iWildCam 2019 where we have labelled im-
ages provided to us. The current literature pointed out
that we have good systems in place to classify images
in one region. However, they perform poorly when we
deploy those systems in new regions. The provided
dataset is exactly meant to study this problem in detail
where the training set and test set don’t have the same
class labels.
We started off with simple image manipulation ideas.
The first experiment was just finetuning existing archi-
tecture and using grayscale images to tackle some ob-
vious image differences. However, those didn’t seem
to work very well for our problem.
To make our model more robust, we experimented
with mixup as a regulatization. Although we noticed
some improvement with using regularization, the per-

formance gain wasn’t significant when we tested it
compared to our previous results.
Finally, we decided to incorporate a detector’s output
into our model since our results showed that the mis-
predictions were for images where no animals were
present. We used the provided detector outputs and
were able to obtain our best results with this modifica-
tion.
The results were better than the baseline model pro-
vided on the Kaggle leaderboard and retrospectively
could be placed amongst the top 20 submissions.

7.1. Future Explorations

The following unexplored ideas came up during the
course of the project and will be explored later on -

• Incorporating zero shot learning as a technique
to handle the classes which are missing from the
training set but are present in the test set

• Use Synthetic data generated by Microsoft Air-
Sim for the missing classes and experiment its ef-
fect on the final accuracy

• Using ResNeXt and EfficientNet architecture for
the task which is the state of the art model on the
ImageNet benchmark at the moment

• Using an ensemble of trained models to improve
the classification accuracy

The code for the work can be found here -
https://drive.google.com/open?id=
1nEKwhqx8b-xRsU0q3cAGqC1s1TVUjJMj

References
[1] C.-A. Brust, T. Burghardt, M. Groenenberg, C. Kad-

ing, H. S. Kuhl, M. L. Manguette, and J. Denzler. To-
wards automated visual monitoring of individual go-
rillas in the wild. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 2820–
2830, 2017.

[2] Center for Data Science, UMass. Data science for
common good. http://ds.cs.umass.edu/
industry/data-science-common-good,
2019. [Online; accessed 19-December-2019].

[3] G. V. Horn, O. Mac Aodha, Y. Song, A. Shepard,
H. Adam, P. Perona, and S. J. Belongie. The inaturalist
challenge 2017 dataset. CoRR, abs/1707.06642, 2017.

https://drive.google.com/open?id=1nEKwhqx8b-xRsU0q3cAGqC1s1TVUjJMj
https://drive.google.com/open?id=1nEKwhqx8b-xRsU0q3cAGqC1s1TVUjJMj
http://ds.cs.umass.edu/industry/data-science-common-good
http://ds.cs.umass.edu/industry/data-science-common-good


[4] N. Kumar, P. N. Belhumeur, A. Biswas, D. W. Jacobs,
W. J. Kress, I. C. Lopez, and J. V. B. Soares. Leafsnap:
A computer vision system for automatic plant species
identification. In ECCV, 2012.

[5] Microsoft. Ai for earth. https://github.com/
microsoft/CameraTraps, 2019.

[6] M. S. Norouzzadeh, A. Nguyen, M. Kosmala, A. Swan-
son, C. Packer, and J. Clune. Automatically identifying
wild animals in camera trap images with deep learning.
CoRR, abs/1703.05830, 2017.

[7] M. S. Norouzzadeh, A. Nguyen, M. Kosmala, A. Swan-
son, M. S. Palmer, C. Packer, and J. Clune. Automati-
cally identifying, counting, and describing wild animals
in camera-trap images with deep learning. Proceedings
of the National Academy of Sciences, 115(25):E5716–
E5725, 2018.

[8] A. Swanson, M. Kosmala, C. Lintott, R. Simpson,
A. Smith, and C. Packer. Data from: Snapshot
serengeti, high-frequency annotated camera trap im-
ages of 40 mammalian species in an african savanna,
2015.

[9] Wikipedia contributors. F1 score — Wikipedia, the free
encyclopedia, 2019. [Online; accessed 19-December-
2019].

https://github.com/microsoft/CameraTraps
https://github.com/microsoft/CameraTraps

