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1 Problem statement

Attention mechanisms have become an integral
part of most natural language processing (NLP)
tasks including machine translation systems. In
this work, we use the attention based Transformer
model (Vaswani et al., 2017) for the task of neu-
ral machine translation (NMT) and improve its
performance through data and model augmenta-
tion (Tran et al., 2017; Ratner et al., 2017). To im-
prove the performance of NMT using transformers
we take three different approaches. First, we com-
bine Part-of-Speech (POS) embeddings and predi-
cate embeddings to the existing word embeddings
for the purpose of incorporating linguistic infor-
mation in our model. Second, we experiment with
initializing the word embeddings with pre-trained
contextualized embeddings (BERT) (Devlin et al.,
2018). Finally, we experiment with Syntactically-
informed self-attention (Strubell et al., 2018a). We
believe conducting these experiments will provide
us with information about the importance of using
linguistic information while training Transformer-
based models.

2 What you proposed vs. what you
accomplished

In the project proposal and milestones we pro-
posed to incorporate linguistic information in the
attention based Transformer model for the task of
neural machine translation (NMT). The lists of
things we proposed to do were:

• Learn POS tag embeddings and add them to
the word features

• Generate fix one hot vectors for POS tags and
concatenate them to word features

• Learn embeddings for POS and concatenate
them to word features

• Add LISA head (Strubell et al., 2018a) to the
last layer of the encoder

• Use a separate encoder with one LISA head
(Strubell et al., 2018a) for POS embeddings
and add the outputs from POS encoder to the
outputs of token encoder

• Train the model to predict both the POS and
tokens for the target language

• Initialize BERT embeddings (Devlin et al.,
2018) and fine-tune the embeddings on our
dataset

We accomplished all the tasks we proposed. How-
ever, contrary to our hypothesis we were unable
to surpass the performance of the baseline model.
We discuss our results in detail in the following
sections.

3 Related work

Many papers have been published that attempt
to improve the performance of Neural Machine
translation using transformers. While most of
these make architectural changes to the trans-
former model (Vaswani et al., 2017) to improve its
performance, we tried both architectural changes
to the model as well as data pre-processing while
keeping the model same. We discuss some of the
existing work here.

In this work we chose to embed syntactic in-
formation into the Transformer based model be-
cause such techniques have shown promising re-
sults recently. (Akoury et al., 2019) propose the
syntactically supervised Transformer, which first
autoregressively predicts a chunked parse tree be-
fore non-autoregressively generating all of the tar-
get tokens in one shot conditioned on the pre-
dicted parse. Unlike the Latent Transformer model
(Kaiser et al., 2018), this model does not suffer



from the discretization bottleneck because the cre-
ation of the chunked sequence is supervised dur-
ing training through an external syntactic parser.
The experiments conducted show significant in-
crease in decoding speeds without increasing the
complexity of the model architecture.

Interestingly, sophisticated embeddings like
ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2018) are found to have robust syntax em-
bedded in them according to probes (Hewitt and
Manning, 2019). Hence, more sophisticated word
embedding architectures in the future may totally
remove the need for adding explicit linguistic in-
formation to the model architecture,especially for
high-resource target languages. In case of low-
resource target languages, syntactic information
may still play an important role. (Tsai et al.,
2019) show that by fine-tuning a pre-trained BERT
model, we can build a multilingual model that
has comparable or better accuracy to state-of-the-
art language specific models by using knowledge
distillation (teacher-student learning) which is a
compression technique in which a small model
is trained to reproduce the behavior of a larger
model. Sentences from Wikipedia are extracted
,tokenized and used to compute cross entropy loss
for the logits of each wordpiece with the distilled
Bert model against the original Bert model. This
distillation loss is used to train the student (Dis-
tilled BERT) from scratch using the teacher (Orig-
inal BERT (Devlin et al., 2018))’s logits on unla-
beled data. Afterwards the student model is fine-
tuned on the labeled data the teacher is trained on.

(Zhou and Xu, 2015) work on jointly predict-
ing Semantic Role Labelling (SRL) spans and
predicates in a deep bi-directional long short-term
memory (DB-LSTM) model obtaining state of the
art predicted predicate SRL.

We also looked at several data augmentation
techniques for improving the performance of the
vanilla-Transformer. (Xie et al., 2019) present
several data augmentation techniques for various
NLP tasks that are very helpful in Semi Super-
vised learning (SSL). They find that instead of
using baseline or naive data augmentation tech-
niques if we use state of the art techniques for un-
labeled data, SSL’s performance can go up signif-
icantly. The two techniques they suggest for NLP
are Back-Translation for question answering tasks
and word replacing with TF-IDF for text classi-
fication. In the first technique an input in a lan-

guage ”A” is translated into another language ”B”
and then translated back to A to get another in-
put with the same semantics. In the second tech-
nique, words with a lower TF-IDF score are re-
placed while those with a higher TF-IDF are kept
which helps in determining the topic of the text.

(Diego Marcheggiani, 2017) use graph convo-
lutional networks (GCNs), to model syntactic de-
pendency graphs. GCNs over syntactic depen-
dency trees are used as sentence encoders. They
produce latent feature representations of words
in a sentence. (Strubell et al., 2018b) present
linguistically-informed self-attention which incor-
porates Parts Of Speech and predicates for the task
of neural semantic role labeling. Unlike other
self-attention mechanisms, this one has dedicated
heads for Syntactic information. We experimented
with using a LISA head in our transformer model
to learn linguistic features.

(Glass et al., 2019) describe a new pre-training
technique called Span selection which focuses
the model on finding semantic connections be-
tween two sequences, and supports a style of
cloze that can train deep semantic understand-
ing without demanding memorization of world
knowledge in the model. Their task at hand is
question answering but a similar approach can
be investigated for machine translation as well.
(Yang et al., 2019b) introduce convolutional self-
attention networks which enhance self-attention
network models’ ability to account for the de-
pendencies amongst neighboring elements and to
model the interaction between features extracted
by multiple attention heads. The idea is to model
locality for self-attention models and interactions
between features learned by different attention
heads in a unified framework. Authors use a 1-
dimensional convolution to restrict the attention
scope of the model to a fixed window of neighbor-
ing elements. They then extend the convolution to
2-dimensional area with the axis of attention head.
This way model can interact local features across
multiple attention heads.

(Chen et al., 2018) propose a hybrid model that
combines the properties of vanilla RNNs, convo-
lutional seq2seq models and transformer models.
This seemingly outperforms all of the state of the
art models for machine translation.

Context aware self-attention (Yang et al.,
2019a) networks are another attempt at improving
the performance of transformer models by contex-



tualizing the transformations of the query and key
layers. They use internal representations that em-
bed both global and deep contexts.

Directional Self-attention Networks (Shen
et al., 2017) are an improvement to the atten-
tion mechanisms in that the attention between
elements from the input sequences is directional
and multi-dimensional. They learn sentence em-
beddings based solely on the proposed attention
model without any RNN/CNN. They are com-
posed of directional self-attention with temporal
order encoded, followed by a multi-dimensional
attention that compresses the sequence into a
vector representation.

Self-Attention with Relative Position Represen-
tations (Shaw et al., 2018) extend the self-attention
mechanism to efficiently consider representations
of the relative positions, or distances between se-
quence elements. They model the input as a la-
beled, directed, fully-connected graph.

(Dou et al., 2018) propose to do layer ag-
gregation to simultaneously expose information
learnt by the lower layers and higher layers in en-
coder decoder models by using multi-layer atten-
tion mechanism.

4 Your dataset

For our project, we are using the IWSLT’14
German to English dataset (Ott et al., 2019). For
this project, we are focusing on the German →
English translation task. Some of the examples
from the training set are below -
S - und was menschliche gesundheit ist, kann
auch ziemlich kompliziert sein.
T - and it can be a very complicated thing, what
human health is.
S - richard bransons leben auf 9000 metern
T - richard branson apos;s life at 30,000 feet

The biggest challenge here is that sentences in
themselves aren’t complete rather they are frag-
ments from a continuous talk and hence, difficult
for a model to translate. The complete dataset
statistics are present in Table 1.

4.1 Data preprocessing

In our pre-processing step, we tokenize the data
using the Moses tokenizer, remove unwanted to-
kens, convert the remaining ones into lowercase,
learn a byte pair encoding (subword NMT reposi-
tory) using the train and valid split which is further

set sentences En tokens De tokens

train 172k 3.46M 3.24M
dev2010 887 20.1k 19.1k
tst2010 1,565 32.0k 30.3k
tst2011 1,433 26.9k 26.3k
tst2012 1,700 30.7k 29.2k

Table 1: IWSLT 2014 dataset statistics

used to transform the three splits. We also binarize
the data for the training phase.

After the preprocessing step, the complete Ger-
man dictionary has 8848 types while the English
one has 6632 types. The training set has 160239
examples, the validation set has 7283 examples
while the test set has 6750 examples. For the
test set, we have a source sentence and a human
verified translation which is used to calculate the
BLEU score against the translated output for the
task.

Our experiments involving BERT embeddings
(Devlin et al., 2018) required the dataset to be
preprocessed as well. BERT can take as input
either one or two sentences and expects special
tokens [CLS] and [SEP] to mark the beginning
and end of each sentence respectively. All words
were converted to lower-case before adding the
special tokens. An example for En and De is
shown below:

Before Tokenization: it can be a very com-
plicated thing, the ocean.
After Tokenization: [CLS] it can be a very
complicated thing, the ocean. [SEP]
Before Tokenization: das meer kann ziemlich
kompliziert sein.
After Tokenization: [CLS] das meer kann
ziemlich kompliziert sein. [SEP]

4.2 Data annotation

Since our dataset is a standard data set we didn’t
need to do data annotation of any form.

5 Baselines

Our baseline model is the original Scaled
Dot Product Attention based Transformer model
(Vaswani et al., 2017). The hyperparameters used
are described below:

• Adam optimizer with an initial learning rate
of 5e− 4



• Inverse square root scheduler

• Dropout = 0.3

• Weight Decay = 1e− 4

We trained the model for about 80 epochs. The
loss value saturated around this time. We ob-
tained a BLEU score of 34.72, 68.9/43.1/29.0/19.9
(BP=0.960, ratio=0.961, syslen=126059, re-
flen=131161) on the test dataset when evaluating
with a beam size of 5.

We couldn’t find a pretrained model for repro-
ducing the IWSLT2014 results in Pytorch. Neither
did we come across an existing literature reporting
the same. However, a benchmark BLEU score of
34.44 is reported for the IWSLT2015 dataset. Note
that the test set for the two results are different.
Since this was close to the value we obtained and
independent trials by the team members resulted
in similar final values, we decided to adopt this as
our Baseline.

6 Your approach

After obtaining the POS tags, we will per-
form translation on the target language (English).
Translation is a task in which the model un-
derstands a sentence S = {s1, s2, ..., sT } in
the source language to predict a sentence t =
{t1, t2, ..., tT } in the target language, where each
output token ti is one of |V | possible tokens in the
target language. In the vanilla transformer, the fac-
torized conditional probability of target sentence is
given by:

P(t1 , ..., tT |S ) =
t∏

i=1

P(ti |t1 , ..., ti ,S )

The loss function we use is negative log likeli-
hood:

logP (t|s) = P(t|s)− log
∑
t′

exp(p(t′|s))

For this translation task, we come up with dif-
ferent approaches to incorporate linguistic infor-
mation into our model:

Data Augmentation:

• The first approach (POS Tags added to Em-
beddings) is to use Pytorch built-in embed-
ding layer to automatically generate embed-
dings for POS tags and add them to word em-
beddings. The embedding of POS tags will
be updated during training.

• The second approach (Concatenating one
hot encoded POS tags) is to create the POS
embeddings as one hot vectors of length 24
and concatenate them with the existing word
embeddings. The concatenated embeddings
are passed into a linear layer and mapped
back to the original size of word embeddings.
The parameters in the linear layer are updated
but the POS embeddings remain fixed.

• The third approach (Concatenated learned
POS tags) is to use Pytorch built-in embed-
ding layer to randomly initialize embeddings
for POS tags of length 24 and concatenate
them with word embeddings. Then the con-
catenated embeddings are passed into a linear
layer and mapped back to the original space
of word embeddings. Both the parameters in
the linear layer and POS embeddings are up-
dated during training.

Model Augmentation:

• The fourth approach (One LISA head in
the last encoder layer) is to add one LISA
head (Strubell et al., 2018a) on the last layer
of the encoder. The LISA head has the bi-
affine attention description (Hewitt and Man-
ning, 2019) which is used for dependency
parsing. We hypothesize this layer combined
with POS information can help the model
better understand the structure of the sen-
tences.

• The fifth approach (LISA layer trained with
POS) is to use a separate encoder with one
LISA head (Strubell et al., 2018a) for POS
tags. The output from POS encoder and to-
ken encoder will be added together and then
sent to decoder. We expect the bi-affine atten-
tion (Hewitt and Manning, 2019) can provide
structural information of the model. The per-
formance of each model is shown in Table 2.

Contextualized Embeddings (BERT)

• Finally we initialized the vanilla pre-trained
transformer model with BERT Embeddings.
BERT embeddings (Devlin et al., 2018) ex-
tracted from the pre-trained HuggingFace
transformer model have a dimensionality of
768. Training the vanilla-Transformer with
768 dimensional embeddings showed poor



results. We believe that the model was over-
fitting to the training data due to a signifi-
cant increase in the number of model param-
eters. Hence, we reduced the dimensional-
ity of the BERT embeddings using Princi-
pal Component Analysis (PCA) before inti-
tialization. We conducted three experiments
with different dimensionality values - 512,
256 and 128.

At the onset, we didn’t expect our approaches
to fail or perform worse than the baselines we es-
tablished. We manged to complete all the imple-
mentations listed here. To accomplish this, we
used the fairseq repository (Ott et al., 2019) and
made changes to its codebase and the Hugging-
face repository (Wolf et al., 2019). The file trans-
former.py is the one where we modified most of
our code. We also had to make changes to the
way the data is read for which we changed the utils
file as well. Some changes were also required in
the fairseq task file to make the information flow
across different parts of the code. We were run-
ning our experiments mostly on an AWS cluster.
Some of the POS codes were sufficient to run on
our laptops.

7 Experiments and Results

Generate POS Tags: The first step for our ex-
periments was to generate POS tags. We used
two different taggers to get the POS tags for our
dataset. They both are described below

• Stanford log-linear POS tagger - We used
the Stanford log-linear POS tagger to get
the POS tags for our German and English
dataset. This tagger is discussed in detail
here (Toutanova et al., 2003). The tagger
is basically a java implementation with sev-
eral models for POS tagging. We used the
left3words model for English because it is
faster than other models. Similarly we used a
faster model for German POS tagging. Even
though we successfully got the POS tags
for our dataset, we are unable to use it as
we discovered that the models after tagging
produced output that had mismatched num-
ber of lines compared to the original input.
The number of lines in the original dataset
for both German and English were 178526
whereas after POS tagging they increase to
191973 for English and 196646 for German.

Figure 1: LISA Layer Trained with POS Tags.

We couldn’t find out the reason behind it and
decided to use the SpaCy tagger instead.

• SpaCy Tagger - We used the SpaCy (Hon-
nibal and Montani, 2017) library to tag our
English and German datasets which is a well
engineered library for many NLP tasks not
limited by a specific domain and general-
izes quite well to new datasets. We used
en core web sm model to label English sen-
tences and de core news sm for German. It
takes 20 minutes to label each of the datasets.
The output didn’t have the lines mismatch
problem we encountered for the previous tag-
ger. One output for English is shown here:
And (cconj) it (pron) can (verb) be (aux)
a (det) very (adv) complicated (adj) thing
(noun) , (punct) what (det) human (adj)
health (noun) is (aux) . (punct)

Model BLEU

Baseline transformer model 30.57
Adding POS tags 27.61

Concatenating one hot encoded POS tags 27.29
Concatenating learned POS tags 27.42

Prepending POS tags 15.97
One LISA head in the last encoder layer 27.80

LISA layer trained with POS 26.90

Table 2: Performance of Augmented models

Augmented models: After we obtained the POS
tags, we had the dataset tokens in the form of
word POS. We split this data after reading, ini-
tialized embedding layers for each and performed



one of the approaches listed above for our ex-
periments. For training, we followed the same
pre-processing steps except one difference. We
didn’t binarize the data this time instead used the
raw implementation to conduct our experiments.
This made us revise our baseline model. When
we trained our model with this raw implementa-
tion, we obtained a baseline BLEU score of 30.57.
Against this, we compared the models we trained
later on.

Another change we did was add a POS dictio-
nary for the model to read. Earlier in our pre-
processing step, we created two dictionaries for
the source and target languages. Since our dataset
had a combined list of 24 POS tags, we created a
new POS dictionary with these tags. We trained
using the same set of hyper-parameters as men-
tioned before. Our max tokens parameter was
set to 4096. We used label smoothing CE loss with
a label smoothing of 0.1 and a warmup updates of
4000.

Figure 2: Performance of BERT Embeddings of vari-
ous sizes.

Models initialized with BERT Embeddings:
After adding [CLS] and [SEP] token to each sen-
tence in the dataset, word embeddings for the
IWSLT’14 dataset were extracted using the Hug-
gingFace (Wolf et al., 2019) pre-trained models
trained on the De and En datasets. We trained the
vanilla transformer with these pre-trained BERT
embeddings. The results are shown in Table 3.

8 Error analysis

We performed error analysis by looking at around
100 sample outputs for each model. We analysed
them based on semantic and syntactic mistakes in

Model BLEU

Baseline transformer model 34.50
BERT 512-d embeddings 31.37
BERT 256-d embeddings 31.68
BERT 128-d embeddings 25.53

Table 3: Performance of BERT models

translation. We compared the errors made by the
model and have summarized our findings below
along with a few examples. Some of the examples
on which our baseline model performs poorly are
shown below :

Title Model

Pred. 1 POS tags added to embeddings
Pred. 2 Concatenating one hot encoded POS tags
Pred. 3 Concatenated learned POS tags
Pred. 4 One LISA head in the last encoder layer
Pred. 5 LISA layer trained with POS
Pred. 6 Prepending POS tags
Pred. 7 BERT Embeddings

Table 4: index and the corresponding model

1. Source: die vereinigten staaten haben heute
die höchste inhaftierungsrate der welt .
Target: the united states now has the highest
rate of incarceration in the world .
Baseline: the united states today has the
highest incarceration rate in the world .
Prediction-1: the united states today has the
highest fertility rate of the world
Prediction-2: the united states today has the
highest incarceration rate in the world .
Prediction-3: the united states today has the
highest fertility rate in the world .
Prediction-4: the united states today has the
highest mortality rate in the world .
Prediction-5: the united states today has the
highest average rate of the world .
Prediction-6: the united states is the largest
killer of the world.
Prediction-7:

• 512D: the united states today has the
highest incarceration rate in the world .
• 256D: the united states today has the

highest incarceration rate in the world .
• 128D: the united states today have the

highest rate of the world .



2. Source: ihre eltern wurden in den 1840ern in
virginia als sklaven geboren .
Target: her parents were born in slavery in
virginia in the 1840
Baseline: her parents were born as slaves in
the 1840s in virginia .
Prediction-1: their parents were born in the
design of virginia as slaves
Prediction-2: her parents were born as a
slave in virginia as a slave .
Prediction-3: her parents were born at the
mahabharata in virginia when slaves was
born .
Prediction-4: their parents were born as a
slave in the 1920s in virginia .
Prediction-5: their parents were born in the
1920s in virginia as slaves .
Prediction-6: her parents were born in the
middle of the city , and her parents were born
in vietnam
Predicition-7:

• 512D: their parents were born in virginia
as slaves in the 1840s .
• 256D: their parents were born in virginia

in the 1840s as slaves .
• 128D: their parents were born in the

1840s in virginia as slaves .

3. Source: heute möchte ich ihnen von kreisen
und offenbarungen erzählen
Target: today i want to tell you about circles
and epiphanies.
Baseline: today i want to tell you about cir-
cles and revelations .
Prediction-1: today i ¡unk¿ ¡unk¿ like to tell
you about circles and revelations.
Prediction-2: today , i want to tell you about
circles and revelations .
Prediction-3: today i want to tell you about
circles and revelations .
Prediction-4: today i want to tell you about
circles and revelations.
Prediction-5: today i want to tell you about
circles and revelations .
Prediction-6: going to tell you about
the importance of ladies and gentlemen .
Prediction-7:

• 512D: today i want to tell you about cir-
cles and openings .
• 256D: today i want to tell you about cir-

cles and revelations .

• 128D: today i want to tell you about cir-
cles and openness .

Error Analysis: We compare the translations of
the different experiments based on syntax and se-
mantics, and we find minor syntactic errors in all
the models which still allow for a good semantic
translation. We find the model with concatenated
one hot encoded tags (Prediction 2) as the one with
the best observed syntax and semantic translations
failing on very few ambiguous sentences. For ex-
ample, in the first sentence, only the prediction 2
correctly translates “incarceration” which is a rare
word in the corpus. This model has better per-
formance because it can put more attention on the
syntactically important word in the sentence.
POS tags added to embeddings (Prediction 1) per-
form semantically well on most of the sentences
but fail to grasp syntactic and grammatical struc-
tures of English sentences.

The model with one LISA head (Prediction 4)
in the last encoder layer) performs well semanti-
cally after the concatenated one hot embeddings
although there are some noticeable semantic errors
that could have possibly been reduced by some
more syntactic supervision. But as is clear from
the loss curve, the model has overfit to our data.
Prepending POS tags (Prediction 6) does not show
great semantic or syntactic understanding of the
English language showing that the model has
slightly overfit. We can also see that in all of
the three examples, concatenating one hot encoded
POS tags gives better translation than just adding
the POS tags to embeddings. This is strange, given
that in the BLEU score the behavior is opposite.
This is most probably because we got unlucky in
terms of picking the examples from the dataset.
Surely, in the rest of the dataset, adding POS tags
to embeddings does better than concatenating one
hot encoded POS tags.

It is also strange to see that concatenating POS
tags and then finetuning the embeddings (Predic-
tion 3) actually ends up learning a very deviant
subject words in the sentence. For example, in
the second sentence, the model somehow learns to
predict ”mahabharata” which is completely irrele-
vant to the context of the sentence. This is because
the model when finetuning the emebeddings also
finetunes POS embeddings since they are concate-
nated with the word embeddings and this causes
the difference in prediction for the main subject
words of the sentence.



The experiments involving the BERT embed-
dings (Devlin et al., 2018) show some promis-
ing results but are still unable to beat the baseline
score.

Firstly, it is clear to see that 128-Dimensional
embeddings are unable to capture all the impor-
tant features in the source language. As seen in the
learning curves in Figure 2 the validation loss for
this model is always lower than the training loss
which means this model is under-fitting. The train-
ing loss went to plateaus around 5 as the learning
slows down. Since the training curve plateaus, we
can say that the training has converged.

The models trained with 512-dimensional and
256-dimensional embeddings have very similar
performances but have a slightly low BLEU score
than the baseline. Looking at the loss curves for
the the model trained 512-D embeddings it is clear
that the model overfit on the training data as the
validation loss does not seem to reduce at all. In
case of the model with 256-D embeddings, the
model seems to train well and may have better
performances after some possible hyperparameter
tuning.

9 Contributions of group members

• Zhiyang: use SpaCy to generate POS
tags for German / preprocess datasets
/ modify Fairseq transformer model to
add/concatenate POS embeddings to token
embeddings / modify Fairseq transformer
model to incorporate LISA head in the en-
coder / write reports

• Zaid: Wrote the script to get the BERT em-
beddings for the English and German dataset
/ Used the Stanford POS tagger to tag the
German and English dataset. This was later
found to be changing the number of lines in
the dataset so we had to switch to SpaCY /
Contributed to the error analysis section of
the report / Read 5 extra papers for citing in
the related word section of the final report.
This is on top of the 4 core papers that the
whole team read.

• Shanu: Used SpaCy to generate POS tags
for English / Pre-process datasets / Modify
Fairseq transformer model to add and con-
catenate POS embeddings to token embed-
dings / modify Fairseq transformer model to

incorporate LISA head in the encoder / Train
models on AWS / Wrote reports.

• Sahil Mishra: Preprocess datasets to incor-
porate BERT embeddings / performed Prin-
cipal Component Analysis (PCA) to reduce
the dimensionality of 768-dimensional BERT
embeddings to 512, 256 and 128 respectively
/ trained Fairseq vanilla-Transformer model
with BERT embeddings initializations / write
reports

• Rajvi : Read papers / Looked into the existing
LISA implementation / Looked into the ex-
isting BERT embeddings code / Debugging
elmo/bert embeddings,looked into error anal-
ysis

10 Conclusion

In this work, we conducted multiple experi-
ments to test the significance of augmenting
Transformer-based models with external linguis-
tic information. Our initial intuition was that the
models themselves weren’t incorporating POS in-
formation and hence, we explored that line of
thought. During these experiments we learned that
while there are exceptional open-source tools like
HuggingFace (Wolf et al., 2019) and Fairseq (Ott
et al., 2019) it can be significantly difficult to use
different datasets with these existing models. It is
not trivial to hack around their codebase and ac-
complish what you set out to do. The way that
the datasets are read also takes a while to under-
stand and we had to spend time figuring out how
to change them. Some models can also be ex-
tremely brittle and can perform poorly even with
minor changes like increasing the dimension size
of the embeddings.
Our main takeaway is that these models somehow
have linguistic information encoded in them. We
were initially surprised by our results because we
expected a significant improvement over the base-
line because our models had more linguistic in-
formation. We later realized that our model may
be overfitting to the training data due to the in-
crease in parameters. We tried different ways but
we couldn’t beat the baseline we established.
Future work could include working with a larger
dataset like the WMT so that we have a more con-
crete evaluation of our hypothesis. We would also
like to conduct multiple experiments for tuning the
hyperparameters more to fit to the dataset better.
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