
Using Microsoft Azure as a Machine Learning Service

Cheng-Yin Eng
chengyineng@umass.edu

Katie House
khouse@

Shanu Vashishtha
svashishtha@

Deeksha Razdan
drazdan@

Abstract

Azure Machine Learning service provides a
cloud-based environment data scientists can
use to pre-process data, train, test, and de-
ploy models, and also track various runs of
machine learning model experiments. Such
service allows more efficient workflow, con-
sistent and scalable computing environment,
and also reduces the financial cost of purchas-
ing and maintaining expensive hardware that
might not be used often. Since the service cur-
rently lacks comprehensive documentation for
user tasks, our group’s goal is to: (1) be ac-
quainted with cloud computing concepts; and
(2) produce user-friendly, end-to-end data sci-
ence notebook tutorials that are accessible to
general data science audience, utilizing the
advantages of cloud computing features. In
this work, we discuss our experience of us-
ing Azure to complete a suite of common data
science tasks and present Azure’s performance
in terms of speed, accuracy and ease of open-
source code compatibility. We also present a
comparison with other available platforms and
libraries used today to perform these tasks.

1 Introduction

Machine Learning as a Service (MLaaS) is an um-
brella definition of various cloud-based platforms
that cover most infrastructure issues such as data
pre-processing, model training, model evaluation,
and model prediction, which can be connected to
APIs. Amazon Machine Learning services, Azure
Machine Learning, Google Cloud AI, and IBM
Watson are four leading cloud MLaaS services.
MLaaS promises faster model training and deploy-
ment, lower upfront cost (since companies only
pay for the resources that they use), consistent ac-
cess to data and models regardless of the platforms
data scientists are using, and lastly a scalable com-
puting environment.

Microsoft Azure itself claims to offer several
distinctive advantages that no other competitors
offer. For instance, Azure has the ability to use
mixed compute resources and affords the ease in
integrating with existing data science scripts. The
former allows flexibility in coordinating multi-
ple pipelines across heterogeneous computing re-
sources. For instance, data scientists can run indi-
vidual pipeline steps on various compute targets,
such as HDInsight, GPU Data Science VMs, and
Databricks; this makes efficient use of available
compute options. The latter advantage in open-
source integration opens up opportunities to use
existing scripts readily on the platform, with only
the addition of a wrapper to create a workspace
and to manage different experiment runs in one
portal.

To properly take advantage of and ultimately
evaluate Azure features, it is critical that we be-
come proficient in using the Azure platform.

Figure 1: Azure Machine Learning Pipeline

Figure 1 above captures a snapshot of the Azure
features that we would like to experiment with
(further elaboration can be found in the Meth-
ods and Experiments section). To demonstrate
the strengths and weaknesses of Azure Machine
Learning service, it is essential for us to build dif-
ferent types of machine learning models. In the
following sections to come, we will first describe
our suite of data science challenges and then pro-
vide our evaluations of the Azure platform.

2 Related Work

We came across AWS SageMaker notebooks
(Labs, 2019) which demonstrate their platform use
to solve data science problems. These notebooks
are detailed in their approach to solving a data sci-
ence problem when a user adapts to their platform.
In comparison, the Azure ML platform lacks a
sufficiently detailed repository of notebooks that
makes it easy for a user to transition to their plat-
form (Learning, 2019). The notebooks reflect their
internal organization structure rather than telling a
user how to accomplish a given task. In addition,
their notebooks cover a small subset of problems
that are being tackled on a daily basis by data sci-
entists all over the world.
Our work is novel because we will be explain-
ing the features in depth which even a beginner
can quickly adapt to. We will also be provid-
ing a demonstration of a wide array of data sci-
ence problems like model explainability, machine
translation, image classification and so on.

3 Problem Definition

Our overall goals are as such:

(a) Become proficient in Azure Machine Learn-
ing features

(b) Address gaps in currently existing Azure
documentation, through identifying bugs and
giving feedback to the Azure team

(c) Create sample end-to-end data science note-
books that encompass a wide array of tasks,
including cleaning the data, training models,
and deploying models

(d) Evaluate Azure Machine Learning Services
against existing tools or packages

4 Methods and Experiments

To demonstrate the strengths and weaknesses of
Azure Machine Learning service, it is essential
for us to build different types of machine learning
models. (House, 2019)

4.1 Experiment 1: A Simple End-to-end
Classification Notebook

We initiated our investigation of Microsoft
Azure’s features by creating a simple end-to-
end classification notebook that implemented the

AML functionality. A classification task was per-
formed to distinguish between commercial blocks
and TV news. The commercial block data is avail-
able online through the UCI Machine Learning
Repository (A. Vyas and Guha, 2017). The fea-
ture set comprises 124 quantitative video broad-
cast statistics such as shot length and motion dis-
tribution. The binary training and testing labels
are commercial (+1) and non-commercial (-1).

Automated Machine Learning iterates through
various high-performing machine learning models
and automatically selects the best model based on
a user-defined loss function. We compared the per-
formance of the best AML model with three sim-
ple classification models, K-Nearest Neighbors,
Neural Networks, and Random Forest, using de-
fault parameters in the Scikit Learn API (Buitinck
et al., 2013) in Python.

4.2 Experiment 2: Training Neural Network
on CIFAR-10 Dataset

We further performed classification task on a more
complex dataset. In this experiment, we ran a two
layer fully connected network on the CIFAR-10
dataset. The base learning rate gave a classifi-
cation accuracy of 42%. We performed a hyper-
parameter optimization for this simple model us-
ing the platform’s inbuilt feature. Also, we in-
vestigated the training time for our model on the
platform and our local machine while trying dif-
ferent values on the hyperparameter hidden layer
size. To investigate whether there is a difference
in the final accuracy values while using different
hyperparameter optimization libraries, we com-
pared the platform’s feature with the existing hy-
peropt library. We also collaborated with an in-
class team working on a separate project. The idea
was to perform hyperparameter optimization for
their model and see if we are able to help them
derive benefits from the platform as well.

4.3 Experiment 3a: Incorporating Model
Explainability using Contrib library

We explore the realm of customer retention. Here
we have Telecommunication Churn Dataset. The
dataset has around 3333 records with 21 columns
one of which corresponds to whether the person
has churned (left the plan) or not. The aim is
to predict whether or not a customer is going to
churn, and to use model explanation to understand
why a customer left. All of this is done improve
customer retention for the company.

Table 1: Summary Results of Experiments

Metric Commercial
Block Classification CIFAR-10 Online

News Popularity

Accuracy on Azure 91.7 58.69 68.9%
(for 5 classes)

Local Accuracy 88.4 57.85 - a

Accuracy Changes 3.3 0.84 - a

aNot applicable, since the analysis is done on only Azure

Figure 2: Hyperdrive run visualization on the Azure
platform. Horizontal axis displays the Epochs while
Vertical axis displays the validation accuracy during the
training for best runs

The idea is to first analyse the data, see what
story it tells you. Then using autoML we used the
best model to predict whether or not a customer
has churned. After which we use the explanation
module to understand why the model thinks that a
particular customer will leave/not leave.

This coupled with the data insights, gives a
complete, end-to-end analysis of the problem
statement and how to improve the customer reten-
tion.

4.4 Experiment 3b: Incorporating Model
Explainability using AutoML Explainer

In this online news popularity dataset on Mash-
able, there are 60 features in total and slightly un-
der 40,000 records. The goal of the model is to
predict five different levels of popularity of an arti-
cle, specifically defined by the number of shares in
social networks. It was extremely easy to use the
AutoMLExplainer package that is built within
the AutoML package. An array of suitable mod-
els was selected automatically during different ex-
periment iterations. For evaluation, various graph
outputs with relevant metrics and model explan-
ability graph were also generated automatically
(Figure 3) and are available to be retrieved from

Figure 3: Model explainability graph generated auto-
maticallyon the portal

the portal.

4.5 Experiment 4: Machine Translation

This machine translation experiment is a course
project in CS690D: Deep Learning for Natural
Language Processing. The goal is to translate
200k German sentences into English. The current
translation method is to use a BERT tokenizer with
Transformer model. This experiment will also
make use of Azure’s hyperparameter optimization
functionality to improve BLEU (bilingual evalua-
tion understudy) score. This experiment is a tes-
tament to the ease of incorporating with existing
codes. Little changes were needed to run the ex-
periment on Azure. The actual transformer model
was not able to finish due to memory issues, but
it is worth noting that Google Colab crashed right
away when the model training process started.

4.6 Experiment 5: DeepCheck

In order to solve a real-world problem with Mi-
crosoft Azure, the team combated a real-world
issue: gun violence in the United States. In
a hackathon called TechTogether Boston, our
team member implemented an end-to-end ma-
chine learning model that aimed to improve gun

background checks, called DeepCheck. The pur-
pose of DeepCheck was to better inform the FBI
and gun owners of the risk of individuals purchas-
ing firearm by analyzing their public Twitter ac-
counts for hate speech and high frequencies of of-
fensive language.

To create this model, the team implemented a
paper that formed a labeled dataset of tweets that
could be classified as either hatespeech, offensive
language, or neutral (Davidson et al., 2017). This
is a randomly sampled dataset of 25,000 from over
85.4 million tweets. Then, the team used the pa-
per’s feature engineering approach to build a clas-
sifier with Azure Automated Machine Learning
feature. Additionally, the team was able to deploy
a web app on Azure.

As a result, the hackathon team won three
awards at the hackathon, including: ”Best
Use of Human-Centered AI”, ”Azure Champ
Challenge”, and ”Policy Makers and Citi-
zens Political Polarization Challenge.” The
DeepCheck repository can be found at www.
github.com/katiehouse3/deep-check
and the hackathon submission is public at
https://devpost.com/software/
deepcheck-dphtv6.

5 Evaluation

Our final deliverable is a series of user-friendly
notebooks that use Azure Machine Learning Ser-
vices to solve real-world data science problems.
To evaluate the usability of Microsoft Azure, we
collaborated with other data science teams and
compared Azure with existing platforms.

5.1 Collaborating with another Data Science
Team

With the idea of making our classmates under-
taking other Data Science projects use the ad-
vantages that Azure has to offer, we collaborated
with the team undertaking the project Probabilis-
tic Embeddings on Taxonomies in collaboration
with Google. They had come up with a model
where they had to manually perform the hyper-
parameter tuning for five different values - learn-
ing rate, w1, w2, r1 and embedding dimension.

We took their existing code and were able to
run their entire script on the Azure platform. In
the process, we had to modify three lines of code
where they were naming the files to be written rel-
ative to the root directory. We also had to add the

logging part in the code which is 2 more lines.
Compared to the overall code, this was less than
1% of the code lines modified. The team appreci-
ated the overall hyperparameter tuning visualiza-
tions. However, when it came to final results, we
weren’t able to perform better than their KL loss
score of 0.0017. The best value that Azure’s au-
tomated search provided was 0.0038 which was
close but, could have been better.

5.2 Comparison with Google Cloud Platform

One method of evaluating the performance of Mi-
crosoft Azure is comparing it to other platforms.
Although our notebooks showcase benefits of us-
ing Azure Machine Learning Services, these ben-
efits may be similar or better in other platforms.
We decided to use Google Cloud Platform as our
comparison technology due to it’s prevalence in
industry and $300 free trial credits.

The Azure team performed the same data
science task as discussed in Section 4.1 using
the Google Cloud Automated Machine Learning
framework. Our first impression of the Google
Cloud Platform (GCP) user interface was positive.
The team liked the straight-forward and clean user
interface compared to the Azure workspace.

However, one large downside with GCP was the
time to complete the data import and modeling
process. It took over 1 hour to upload 16.9 MB
of training data. Furthermore, it took over 2 hours
to train the automated machine learning model on
GCP. Doing this modeling process on Azure only
took 20 minutes from end-to-end. Overall, the ini-
tial comparison of GCP indicated that Azure was
a more efficient platform for this data science task.

6 Results

Overall, we are pleased with the ease of open-
source integration. Azure platform integrates with
existing data science scripts very well and we
only needed to make minimal changes to run the
scripts on the platform.

Table 1 provides metric results associated with
each experiment. We further break down the ben-
efits and limitations of Azure below.

www.github.com/katiehouse3/deep-check
www.github.com/katiehouse3/deep-check
https://devpost.com/software/deepcheck-dphtv6
https://devpost.com/software/deepcheck-dphtv6

6.1 Benefits

6.1.1 Auto Machine Learning improves
accuracy

By comparing accuracy results of standard Scikit
Learn classification techniques with the AML
model, we were better able to understand the ben-
efits of using Microsoft Azure AML. According
to our models, the maximum F1 Accuracy score
was 88%. However, using the Microsoft Azure
AML feature, we instantly brought our accuracy
up to 92%. In future work, we will experiment
with more AML models, standardize the format
of this notebook and add more visuals in order to
publish it to the Microsoft Azure Machine Learn-
ing Services repository.

6.1.2 Hyperparameter optimization
The portal’s hyperparameter optimization feature
was another benefit we came across. Fig. 2 rep-
resents the hyperdrive experiment which resulted
in an almost 16% classification accuracy improve-
ment from the original model. The parameter was
sampled randomly from a uniform distribution. A
total of 100 runs were created with a bandit termi-
nation policy that ended 14 runs which were per-
forming poorly to save resources. The key take
away from this study was that apart from obtain-
ing the best hyperparameters for a model, one also
gets a visualization of all the runs to perform an
epoch wise comparison with few code lines being
added to the original script.

6.1.3 Improves training time
To compare the training time, we performed a hy-
perparameter optimization (for the hidden layer
size) on the portal and locally on a Dell XPS 15
with Intel Core i7-8750H CPU @ 2.20GHz 12
processor, 16 GB RAM and GeForce GTX 1050
Ti with Max-Q Design/PCIe/SSE2 Graphics card.
Our observations are reported in Tab. 2. We could
not run the 5 hyperparameter tuning runs parallely
because of insufficient CUDA memory on our lo-
cal machine. However, we didn’t have any issues
in running them at the same time on the portal.
All of them ran parallely. By CPU for the azure
platform, we mean the cpucluster and by GPU we
mean the gpucluster which have been allotted to
us for this project. Usually, these resources are de-
pendent on the type of subscription availed. We

observe that when just CPU is used for training,
Azure consistently takes less time compared to

our laptop. It is worthwhile noting here that the
laptop being used is a high-end one. In case of
GPU, the training time observed is lower for the
laptop but, the limitation is of the GPU memory.
We could run only 4 threads simultaneously while
the platform didn’t have an issue running all 5.
It must be noted here that in our previous hyper-
drive run to find optimal learning rate, 10 parallel
runs were spawned on the platform at any given
instant. Hence, we can say that although local lap-
tops might be a good option for trying few initial
runs, the Azure platform is a better choice when
one is planning to scale up.

6.1.4 Model explainability searches through
different explanation algorithms

Using the MLI SDK, researchers, data scientists,
and machine learning practitioners can explain
machine learning models using the state-of-art
methods in an easy-to-use and scalable fashion.

Azure leverages proven third-party libraries
(SHAP, LIME, GA2M, Mimic, etc.) along with
our own improvements and unique algorithms (as
needed), creating common APIs and data struc-
tures across the integrated libraries, and interfaces
seamlessly with AML services. It wraps all the
explainers so they have a common API and output
format.

We only have to use one module to perform ex-
planation. It automatically selects a suitable direct
explainer and generates the explanation info based
on the given model and data sets.

After using their model explanation package,
one can upload the explanation to the cloud and
visualise it!

6.2 Improves task efficiency

The AutoML package that iterates through dif-
ferent model types was immensely helpful. The
graph outputs provided on the portal are also typ-
ical graphs that data scientists would use to eval-
uate their models. In addition, AutoML records
different types of metrics during each experiment
run, saving much time and effort and preventing
code replication.

6.2.1 Parallel runs and version tracking
For the machine translation project, Azure’s abil-
ity of being able to parallelize runs and keeping
track of versions is hugely beneficial. We were
able to submit different hyperparameter combina-
tions and make changes to the scripts and send

Table 2: Training time (in min)for a two layer fully connected model on CIFAR-10 dataset

Hidden units in the fc-layer 4000 5000 6000 7000 8000
CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU

Azure platform 11.31 3.12 20.44 1.31 23.02 1.27 25.18 3.27 27.22 3.31
Dell XPS 15 20.26 2.45 23.10 2.82 25.33 3.14 26.87 3.37 27.67 1.75

them to compute targets separately. It was also
helpful that we did not have to track changes man-
ually, since Azure’s platform keeps a record of the
script that is submitted to run.

7 Limitations

Azure provides a dprep module that helps with
data cleaning and imputation. The module is not
meant to be a re-invention of pandas and returns
a dflow object, rather than a regular dataframe,
therefore lacking many of the functionalities, in-
cluding returning columns of a data frame. A neat
feature introduced by dprep was autoreadfile(),
which can infer file type automatically, however
the limitations of dprep module far outweigh the
convenience of autoreadfile().

8 Conclusion

Overall, we are pleased with Azure’s usability, es-
pecially its ability to integrate with open-source
codes. The portal interface is a little convoluted,
but the machine learning features themselves are
easy to use. We found that Google Cloud Plat-
form had longer uploading data and training times
than Microsoft Azure. Refer to Table 3 for sum-
mary evaluation across different platforms. Link
to our GitHub repo is provided at http://www.
tiny.cc/azureml. All in all, despite the ini-
tial learning curve, using Azure has been a good
experience and we encourage all hesitant watch-
ers to try out Azure.

9 Future Work

We are collaborating with Professor Eric E.
Poehler from Classics department, UMass
Amherst who is undertaking a project to describe
the landscape of Pompeii’s architectural decor.
He needs data rich environments that can serve as
workflow templates for a cadre of undergraduate
students who will deeply describe those thousands
of artworks at Pompeii. As of now, we are
focusing on recognizing common elements within
those artworks using standard object recognition

Figure 4: YOLO prediction on one of the Pompeii Im-
ages

architectures on the Azure platform. Fig. 4
presents one of our early experiment results with
further investigation underway.

Our teammate, Katie House, will also add to
the DeepCheck web application and notebook
throughout the summer as a personal project.
Next steps for DeepCheck involve adding more
model documentation and tuning the model
to more accurately detect hate speech. The
DeepCheck team plans to compete in Microsoft’s
2020 Imagine Cup.

References
A. Vyas, R. Kannao, V. B. and Guha, P. (2017). Commercial

block detection in broadcast news videos, in proc. ninth
indian conference on computer vision, graphics and image
processing. CVPR.

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F.,
Mueller, A., Grisel, O., Niculae, V., Prettenhofer, P.,
Gramfort, A., Grobler, J., Layton, R., VanderPlas, J., Joly,
A., Holt, B., and Varoquaux, G. (2013). API design for
machine learning software: experiences from the scikit-
learn project. In ECML PKDD Workshop: Languages for
Data Mining and Machine Learning, pages 108–122.

Davidson, T., Warmsley, D., Macy, M., and Weber, I. (2017).
Automated hate speech detection and the problem of of-
fensive language. In Proceedings of the 11th International
AAAI Conference on Web and Social Media, ICWSM ’17,
pages 512–515.

House, K. (2019). Github reposi-
tory of our notebooks. Available at

http://www.tiny.cc/azureml
http://www.tiny.cc/azureml

Table 3: Summary of Evaluation across Platforms

Feature Azure Google Local
Free Advanced GPU - + NA

Uploading Data + - -
Preprocessing - - +
Training Time + - -

Hyperparameter Sweep + NA -
Model explainability + - -

Usability + + -
+ : good; - : unsatisfactory; NA : not applicable

https://github.com/katiehouse3/
microsoft-azure-ml-notebooks.

Labs, A. (2019). Amazon sagemaker examples. Avail-
able at https://github.com/awslabs/
amazon-sagemaker-examples.

Learning, A. M. (2019). Machine learning note-
books. Available at https://github.com/Azure/
MachineLearningNotebooks.

https://github.com/katiehouse3/microsoft-azure-ml-notebooks
https://github.com/katiehouse3/microsoft-azure-ml-notebooks
https://github.com/awslabs/amazon-sagemaker-examples
https://github.com/awslabs/amazon-sagemaker-examples
https://github.com/Azure/MachineLearningNotebooks
https://github.com/Azure/MachineLearningNotebooks

